CCP9 flagship: Hybrid & range-separated (R-S) functionals

My focus is on one of the three development work packages:

WP2: Hybrid & R-S functionals

Two major goals:
1. Accelerate hybrid XC functionals
2. Add support for R-S XC functionals

Builds on ONETEP’s existing Hartree-Fock exchange (HFX) implementation:
- Scales linearly with number of atoms, N
- *But* restricted to small systems ($N \sim 100$)

Current focus:
- Enable HFX to scale to 1000s cores
- Practical HFX for large N (ideally ~ 1000)
CCP9 flagship: Hybrid & range-separated (R-S) functionals

WP2 interacts with the other development work packages:

<table>
<thead>
<tr>
<th>WP1: Embedding methods</th>
<th>WP3: Excited state forces & geometries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition local orbitals into spatial regions:</td>
<td>Forces in LR-TDDFT calculations:</td>
</tr>
<tr>
<td>▶ Different levels of theory in different regions</td>
<td>▶ Geometry optimization and ab initio MD</td>
</tr>
<tr>
<td>▶ Embed excited state in ground state environment e.g. LR-TDDFT in ground state DFT</td>
<td>▶ Longer timescale excited state behaviour e.g. dissipation, reaction dynamics</td>
</tr>
</tbody>
</table>

Hybrid (and R-S) XC functionals must be compatible with other WPs, i.e.

- **WP1**: Support for spatially partitioned NGWF sets
- **WP3**: Evaluation of XC contribution in excited state
Why do we need hybrid functionals?

Hybrids include Hartree-Fock exchange:

\[
E_{x}^{\text{HF}}[n[\{\psi_{i}\}]] = - \sum_{i=1,j=1}^{N_{\text{occ}}} (\psi_{i}\psi_{j}|\psi_{j}\psi_{i})
\]

\[
\int \text{d}r \text{d}r' \psi_{i}^{*}(r)\psi_{j}^{*}(r') \frac{1}{|r - r'|} \psi_{j}(r)\psi_{i}(r')
\]

- Corrects self-interaction error in Coulomb term
- Can mix local and HF exchange contributions

R-S hybrids partition Coulomb operator:

- Long-range correction (e.g. CAM-B3LYP)
- Screened-exchange (e.g. HSE)

Hybrid functionals are (can be) more accurate!
Overview of linear-scaling Hartree-Fock exchange in ONETEP

HFX with SWRI

- ONETEP minimizes $E[K, \{\varphi_\alpha\}]$
- HFX expressed in terms of K and $\{\varphi_\alpha\}$
- HFX expanded via spherical wave (SW) resolution-of-the-identity (RI)

\[
E_{x}^{\text{HF}} = -K^\beta_\alpha (\varphi_\alpha \varphi_\delta | \varphi_\beta \varphi_\gamma) K^\delta_\gamma
\]

\[
E_{x}^{\text{SWRI}} = -K^\beta_\alpha (\varphi_\alpha \varphi_\delta | f_p) V^{pq} (f_q | \varphi_\beta \varphi_\gamma) K^\delta_\gamma
\]

Truncated SW basis

- Analytic Coulomb potentials
- Strictly localized (within $r < a$)
- Systematically improvable (like plane waves)

\[
f_p(r) = \begin{cases}
 j_{l_p}(q_pr)Z_{l_p m_p}(\hat{r}) & r < a \\
 0 & r \geq a
\end{cases}
\]
Challenges for linear-scaling Hartree-Fock exchange in ONETEP

$O(N)$ computational cost, with caveats

- Very high computational cost (CPU and memory)
- Restricted to $N \sim 100$ atoms (ONETEP capable of $N > 10000$)

Major issues to address

1. Non-optimal parallelization of overall scheme
2. Large prefactor and memory usage for evaluation of Coulomb metric (V)

My primary focus so far has been the development of new scheme for evaluating V...
Existing Coulomb metric evaluation scheme (3Dc)

\[V_{A_p,B_q} = \int d\mathbf{r} f_p(\mathbf{r}_A)g_q(\mathbf{r}_B) \]

\[g_q(\mathbf{r}) = \int d\mathbf{r}' \frac{f_q(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \]

Piecewise Chebyshev polynomial expansion of \(f_p \) and \(g_q \) in Cartesian coordinate system:

- Integrate expanded integrand analytically
- \(N_i^3 N_o^3 \) Chebyshev nodes per expansion
- \(N_i = N_o = 12 \) gives \(\sim 3 \times 10^6 \) coefficients i.e. \(22 \text{ MiB per SW expansion} \).
- Burdensome with 100s of SWs per atom!
New Coulomb metric evaluation scheme (2Dn-1Da)

2-D numerical, 1-D analytic integration in a spherical polar coordinate system:

- Use SWs with RSHs with \(z \) aligned along \(\mathbf{R}_{AB} \)
- Separate into \((r, \theta)\)- & \(\phi\)-dependent parts
- Integral over \(\phi\) has simple analytic solution
- \(N_i^2N_o^2\) Chebyshev nodes per expansion
- \(N_i = N_o = 12\) gives \(\sim 2 \times 10^4\) coefficients i.e. 160 KiB per SW expansion.

A rotation is required:

- ONETEP’s SWs are aligned with \(z\) in the original Cartesian coordinate system
- Use Wigner D-matrices to express 2Dn-1Da SWs in terms of ONETEP SWs (a rotation)
Some preliminary results

Full V-matrix evaluation for a H_2 molecule with typical size SW basis. . .

(I cheated a bit! No rotations are needed in this case: H_2 is aligned along Cartesian z axis.)

Numerical comparison of schemes:

- Comparison of full metric matrix
- OT: ONETEP implementation
- SM: Sage Math prototype

<table>
<thead>
<tr>
<th></th>
<th>Min time over 3 repetitions / s</th>
<th>Norm of diff.</th>
<th>Max abs. diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBE (no V-matrix)</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBE0 (new scheme)</td>
<td>8.24</td>
<td>1.93×10^{-04}</td>
<td>4.12×10^{-05}</td>
</tr>
<tr>
<td>PBE0 (old scheme)</td>
<td>141.07</td>
<td>3.31×10^{-06}</td>
<td>5.27×10^{-07}</td>
</tr>
</tbody>
</table>

“[O]btaining the elements of V to an accuracy of the sixth decimal [is] sufficient for stable calculations”

Performance comparison of schemes:

- Total: time for fixed NGWF calculation (inner loop optimization only)
- Off-site blocks: time spent evaluating V-matrix blocks with $A \neq B$