DL_MG: Solving the Poisson equation made easy!
A parallel multigrid solver library for electronic structure calculations in vacuum and solution

James C. Womack
School of Chemistry, University of Southampton, UK

DFT Code Developer Community Meeting, July 2018
Preamble

Slides will soon be available at jcwomack.com

Bibliographic references — ask me, or see slides online
The Poisson equation in electronic structure

\[
\left(-\frac{1}{2} \nabla^2 + \hat{V}_{\text{eff}} \right) \psi_i = \varepsilon_i \psi_i
\]

\[
E_{\text{KS}}[n] = T_s[n] + E_{\text{es}}[n] + E_{\text{xc}}[n]
\]
The Poisson equation in electronic structure

\[E_{es}[n] = \frac{1}{2} \int d\mathbf{r} \, n(\mathbf{r}) \phi_0[n](\mathbf{r}) \]

\[\nabla^2 \phi_0(\mathbf{r}) = -4\pi n(\mathbf{r}) \]

\[\tilde{\phi}_0(\mathbf{G}) = 4\pi \frac{\tilde{n}(\mathbf{G})}{|\mathbf{G}|^2} \]

Standard Poisson equation (SPE)
- Vacuum or uniform permittivity
- Potential \(\phi_0 \) due to charge density \(n \)

Analytic reciprocal space solution
- Under fully periodic BCs
- \(n \) must be neutral, i.e. \(\tilde{n}(0) = 0 \)
Continuum dielectric implicit solvent models

- Place charge density in vacuum cavity
- Embed in polarizable dielectric medium
- Solve for ϕ using the...

Generalized Poisson equation (GPE)

$$\nabla \cdot (\varepsilon(\mathbf{r}) \nabla \phi(\mathbf{r})) = -4\pi n(\mathbf{r})$$

- Non-homogeneous permittivity ε
- ϕ includes effect of polarizing dielectric medium, i.e. $\phi = \phi_0 + \phi_r$
The minimal parameter implicit solvent model (MPSM)

- In ONETEP [1, 2] and CASTEP [3]
- Refinement of earlier work by Fattebert, Gygi and Scherlis [4, 5]

Smoothly varying dielectric function

\[
\varepsilon(\mathbf{r}) = 1 + \frac{\varepsilon_\infty - 1}{2} \left(1 + \frac{1 - (n_{\text{elec}}(\mathbf{r})/n_0)^{2\beta}}{1 + (n_{\text{elec}}(\mathbf{r})/n_0)^{2\beta}} \right)
\]

- Defined in terms of electron density
- Two fitted parameters: \(n_0, \beta \)
- Yields a continuous potential \(\phi \)

Note: There are many more details to this model (e.g. non-electrostatic part, BCs, ionic charge) — see papers of Dziedzic et al. for full description [1, 2].
Free energies of solvation computed with the MPSM and other models

<table>
<thead>
<tr>
<th>Approach</th>
<th>XC functional</th>
<th>RMS error</th>
<th>Max error</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPSMa</td>
<td>PBE</td>
<td>3.8</td>
<td>8.3</td>
<td>0.83</td>
</tr>
<tr>
<td>MPSMb</td>
<td>PBE</td>
<td>4.1</td>
<td>9.1</td>
<td>0.83</td>
</tr>
<tr>
<td>PCM</td>
<td>PBE</td>
<td>10.9</td>
<td>23.3</td>
<td>0.53</td>
</tr>
<tr>
<td>SMD</td>
<td>M05-2X</td>
<td>3.4</td>
<td>14.5</td>
<td>0.87</td>
</tr>
<tr>
<td>AMBER</td>
<td>(classical)</td>
<td>5.1</td>
<td>19.9</td>
<td>0.77</td>
</tr>
</tbody>
</table>

a With cavity responding self-consistently to changes in density.

b With cavity fixed.

The MPSM performs as well, if not better than other models, with only 2 fitted parameters!

Accuracy is important, but so are performance and efficiency!

An efficient GPE solver is needed...

- 71 neutral molecules in H$_2$O [6, 7]
- Errors (kcal mol$^{-1}$) wrt experimental free energies of solvation [8]
- See original MPSM paper [1]
DL_MG: An overview

A flexible, scalable, and accurate open source Poisson solver library

- Parallel (MPI + OpenMP) multigrid approach [9]
- Written in modern Fortran
- SPE, GPE, and Poisson-Boltzmann equation
- Periodic, open and mixed BCs
- High-order accuracy via iterative defect correction [9, 10].

- Used extensively in ONETEP for implicit solvent calculations
- Available from www.dlmg.org now!
Solver implementation: Multigrid

Discretized Poisson equation

\[\hat{A}_h u_h = f_h \]

- \(\hat{A} \) is \(\nabla^2 \) or \(\nabla \cdot \varepsilon(\mathbf{r}) \nabla \)
- \(u \) is the potential, \(\phi(\mathbf{r}) \)
- \(f \) is the charge density, \(n(\mathbf{r}) \)

Solvable by stationary iterative methods:

- High frequency components of the error are rapidly attenuated
- But low frequency components limit convergence

Multiple grids can improve convergence:

- On a coarser grid, lower frequency components appear higher in frequency
- Correct the solution on a fine grid using error from a coarser grid
- Apply recursively on grid hierarchy
Solver implementation: High-order defect correction

- Initial solution is obtained using a 2nd-order multigrid solver
- Discretization error reduced using high-order defect correction method [9, 10]

```
1: \( i = 0 \)
2: Solve \( \hat{A}_2 u^{(0)} = f \)
3: \textbf{while} not converged \textbf{do}
4: \hspace{1em} Compute \( r_d^{(i)} = f - \hat{A}_d u^{(i)} \)
5: \hspace{1em} Solve \( \hat{A}_2 e_{2,d}^{(i)} = r_d^{(i)} \)
6: \hspace{1em} Correct \( u^{(i+1)} = u^{(i)} + e_{2,d}^{(i)} \)
7: \hspace{1em} \( i = i + 1 \)
8: \textbf{end while}
```

- High-order operator \(\hat{A}_d \) is only needed to compute \(r_d \) on the fine grid
- Multigrid can use a simpler \(\hat{A}_2 \) operator
- ...then correct to higher-order accuracy

By employing this scheme, we avoid the complexity of applying high-order operators on coarse grids.
Accuracy of the solver with order of finite differences

- DFT (ONETEP) with DL_MG
- 448 atom graphene sheet
- Solving the SPE in periodic BCs

\[\nabla^2 \phi_0(r) = -4\pi n(r) \]

- Error is wrt analytic solution
- Sub-\(\mu E_h/\)atom error for \(\geq 10^{\text{th}}\)-order FD

High-order defect correction reduces the error by orders of magnitude!
Scaling of computational work with problem size

- Solving the GPE for a simple model
- Gaussian $\phi(\mathbf{r})$, erf-derived $\varepsilon(\mathbf{r})$
- Represents an isolated molecule embedded in implicit solvent [12]

$$\nabla \cdot (\varepsilon(\mathbf{r})\nabla \phi(\mathbf{r})) = -4\pi n(\mathbf{r})$$

- Useful for benchmarking:
 1. Can arbitrarily scale grid size
 2. Analytic solution is known

We observe $O(N_{\text{grid}})$ scaling in all components up to $\sim 1000^3$ gridpoints!

Run on MMM Hub “Thomas”: 6 nodes/64 MPI processes & 2 OpenMP threads per MPI
A very brief introduction to DL_MG’s API

Initialization

```call dl_mg_init(nx, ny, nz, dx, dy, dz, bc, gstart, gend, &
    mg_comm, report_unit, report_file, ierr)``

Calling the solver

```call dl_mg_solver(eps, eps_mid, alpha, rho, &
 pot, fd_order, ierr)```

Simple, yet powerful:

- Sensible default algorithms and parameter values
- Expert users can tune these via optional arguments
- Equation type is inferred from arguments to overloaded `dl_mg_solver`
Summary

DL_MG: Solving the Poisson equation made easy!

1. A flexible, scalable and accurate Poisson solver library

2. Enables electronic structure calculations in vacuum and solvent

3. Simple, yet powerful API
Acknowledgements

Funding

- ARCHER eCSE programme (eCSE07-006) [3]

Collaborators

- Lucian Anton (Cray Inc.)
- Jacek Dziedzic (Gdańsk, Southampton)
- Phil J. Hasnip (York)
- Matt I. J. Probert (York)
- Chris-Kriton Skylaris (Southampton)
Further information

www.dlmg.org

Paper

DL_MG: A Parallel Multigrid Poisson and Poisson–Boltzmann Solver for Electronic Structure Calculations in Vacuum and Solution
J.C. Womack, L. Anton, J. Dziedzic, P.J. Hasnip, M.I.J. Probert, and C.-K. Skylaris,

Technical report

Implementation and Optimisation of Advanced Solvent Modelling Functionality in CASTEP and ONETEP
J.C. Womack, L. Anton, J. Dziedzic, P.J. Hasnip, M.I.J. Probert, and C.-K. Skylaris,
ARCHER eCSE technical report eCSE07-006 (2017)
Strong scaling of DL_MG when solving the GPE

- Solving the GPE for a simple model
- Gaussian $\phi(r)$, erf-derived $\varepsilon(r)$
- Fixed problem size: $N_{\text{grid}} = 1089^3$
- 1, 2 of 4 OpenMP threads per MPI
- Reported speed up is for the minimum total time over 5 repetitions
- Run on MMM Hub “Thomas” supercomputer

Near linear, but less-than-ideal, speed up for typical core counts used in parallel electronic structure calculations (10s to 100s of cores).
Bibliography I

